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[ Abstract |
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The concept of adaptive radiotherapy ( ART) was proposed 20 years ago, and since then a variety of meth-

odologies and techniques have been developed to accommodate different clinical requirements, including both online and of-

fline plan adaptations.

sequently has increased complexity and computational burden. While ART can benefit many cancer patients,

still exist in development and implementation of high-quality ART programs.

Compared with pre-treatment planning, plan adaptation involves more computational tasks and con-

challenges

In this short review, we will focus on the de-

velopment of offline ART for lung cancer. We will also discuss the advantages and disadvantages of different clinical imple-

mentations of ART.
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INTRODUCTION

Adaptive Radiation Therapy ( ART) is a state-of-
the-art approach that uses a treatment feedback process
to account for patient-specific anatomic and/or biologi-

thus, delivering highly individualized ra-

[1]

cal changes,
ART strategies
Offline ART

generates a new radiation treatment ( RT) plan based

diation therapy for cancer patients

include offline and online adaptations.

on the images acquired during the RT delivery session,
accounting for information from previous treatment frac-

tions, and delivers the new plan for subsequent frac-

[2]

tions to correct for systematic variations In con-

trast, online ART generates a new plan based on the
image of the day and delivers the new plan for that day’s
fraction accounting for both random and systematic

341 This work will review technical aspects of

changes
offline ART based on its applications for lung cancer.
It has been well documented that advanced RT
technologies have significantly improved radiation treat-
a large

ment outcome for lung cancer. For example,

population-based study showed that IMRT improves o-
verall survival for patients with T3 and T4 tumors ',
Another example is on-board imaging ( OBI) which
helps reduce patient setup errors and minimize radiation

With the assis-

toxicity to surrounding normal tissue.



. 8. MR BT 5677 2019 4E 1 H 55 32 %55 1 #)] J Cancer Control Treat, January 2019, Vol. 32, No. 1

tance of OBI, stereotactic body radiotherapy ( SBRT)
has significantly improved clinical outcomes "*°'. The
emergence of MRI-Linac may further enhance the capa-
bilities of real-time tracking for intra-fractional tumor
motion, and online plan adaptation could consequently
be achieved by making radiation beams conformal to
tumor targets throughout the whole treatment course
[4,10-11]

Different from lung SBRT which has been reported
to be an efficient treatment modality, dose escalation for
locally advanced cancer patients has not yet been im-
plemented in clinic because escalating target dose may
result in the increased risk of normal tissue complica-

{2947 On the other hand, tumor volumes may

tions
change during the course of treatment. For example,
with 1.2% daily tumor regression as reported in litera-
ture, the pre-treatment plan can be adapted with beams
conformal to reduced tumor targets. This may help in-
crease target dose, reduce normal tissue toxicity, and
thereby improve treatment outcomes for these patients
517 These pre-clinical studies have highlighted the
importance of clinical implementation of adaptive radio-
therapy. Since ART involves many techniques and can
be applied to different clinical scenarios, it is not feasi-
ble to introduce all the aspects of this treatment modali-
ty in a short review. Instead, this article will go through
the major technical components developed for off-line

plan adaption for patients with locally advanced lung

cancer.

TECHNICAL DEVELOPMENT

ART involves many tasks such as developing an
initial treatment plan, evaluating treatment response u-
sing computed tomography (CT) , cone beam computed
tomography ( CBCT) or positron emission tomography
(PET) images, and making decisions on plan adapta-
tion. If required, an adaptive plan will be developed
that includes re-contouring, dose accumulation, plan
re-optimization, and quality assurance. In the following
sections we will discuss the current status of technical
development for each of these tasks.

Contour re-generation
Contour delineation for tumor targets and organs at risk

. . . . . [18
1s a time-consuming process 1n treatment planmng[ "

While frequent plan adaptations may help maximize the
benefits of ART "' | transitional gains in each adapta-
tion step may be counteracted by tremendous efforts put
in re-contouring and other re-planning tasks. To ad-
dress this issue, different approaches were developed to
automatically generate contours. Various 2D or 3D au-
to-segmentation techniques such as region-growing and
“snake” algorithms have been developed for direct seg-
mentation of different anatomic structures such as bone,
pancreas, heart, esophagus "?''; deformable image
registration ( DIR) algorithms have also been employed
to automatically propagate contours from the original

23] Due to

planning CT images to during-RT images
limited contrasts and gradients in during-RT images,
the registrations could have large errors, and the propa-
gated volumes need to be thoroughly assessed .
Atlas-based segmentation methods are expected to
segment image structures that have no obvious intensity
differences, where the a priori information about the
difference between these objects can be incorporated in

241 Recent de-

spatial relationship or statistical models
velopments in machine learning have revolutionized the
field of artificial intelligence. Deep learning algorithms,
especially deep convolutional neural networks ( DC-
NN), are a powerful methodology for solving challeng-
ing medical imaging problems such as tumor detection,
disease classification, and structure segmentation >,
Different atlas-based segmentation approaches could
consequently be enhanced by the developed machine
learning techniques .

Deformable image registration ( DIR)

Deformable registration of two images is to estab-
lish a correspondence map that matches anatomical
structures in one image to their counterparts in the other
image. The counterparts could be the same structures
appeared in the two images acquired at different times
or with different modalities. In adaptive radiotherapy,
longitudinal images are often acquired at different treat-
ment stages for treatment planning, patient setup,
tumor localization, or treatment response assessment.
To use these images correctly, the acquired images
need to be registered to a reference image such that in-

formation contained in these images can be appropriate-

ly interpreted or assessed. DIR is a key component in
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development of adaptive radiotherapy techniques and is
required almost at every step in the process of plan ad-
aptation. Except the contour propagation mentioned be-
fore , dose accumulation, 4D planning and treatment re-
sponse assessment all require accurate DIR. Develop-
ment of an appropriate DIR algorithm for each of these
subjects is an active area of research.

Over the last two decades many registration algo-
rithms have been developed, among which the optical
flow-based “demons” and B-spline-based free form are
two major algorithms developed in many free and com-

[27-28]

mercial software packages . These algorithms have

been modified or improved over the years for different
applications. For example, Yang et al generated in-
verse consistent DVFs to improve the accuracy of the

[29

demons registration '*’ and Vercauteren et al made the

underlying transformation diffeomorphic to generate

30317
9

more smooth deformation fields ' Rueckert et al

made the parametric B-spline-based registration algo-

[32

rithm diffeomorphic "**' | which was then extended to be

hierarchical "' and to have non-uniform knot place-

[34

ments **' and simplified regularizations **'. The B-

Spline and demons algorithms could be combined with a
mechanical model-based finite element method ( FEM)
to register anatomical structures in the case of large-

637 These methods were extended

[38]

scale deformation
to registration of soft tissue in low contrast regions
and between different modality images "*°'. The me-
chanical model-based hybrid registrations could also re-
duce registration errors in the neighborhood of regress-
ing tumors ( Figure 1), and meanwhile maintain the in-

[3940]

tegrity of dose mapping . These technical develop-

ments have enhanced the efficiency of structure contou-
ring and dose accumulation and improved the quality of

adaptive radiotherapy'* *'**

Figure 1. CBCT Images

CBCT images acquired at fraction 1 and 25 shown in (a) and (b), respectively; (c¢) the warped source image (fraction 1) using Ve-

locityATI, and (d) the warped source image using the FEM-based hybrid method, resulting in landmarks consistent to their positions at

fraction 25.

It should be mentioned that computational time for
DIR currently is not yet sufficient for online ART. The
computation speed may depend on multiple factors such
as image size, parametric resolution and number of it-
erations implemented in these algorithms, and simplify-
ing these parameters may compromise the accuracy of

[43]

deformable registration To address these issues,

Gu et al demonstrated that the GPU-enhanced demons
algorithm could complete 4D-CT image registrations a-

“!. In contrast, while B-spline-

round 10 seconds '
based registration algorithms are capable of performing
both unimodal and multimodal registrations, it is diffi-
cult to improve the speed of these algorithms due to

their computational complexity.
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Accumulation of delivered doses

To develop an adaptive plan for the remaining
treatment fractions, radiation dose delivered up-to-date
needs to be accumulated in each image voxel. The ac-
curacy of dose accumulation depends on dose mapping
and its underlying DIR methods used. Most registration
algorithms could currently be accurate within 2 ~3 mm

13,4546 ) hich s comparable to the resolu-

on average
tion of dose grids often used in clinic "**' while
some algorithms could have the mean error up to 6.9

mm %), The registration errors may induce dose map-

[49]

ping uncertainties up to 3 Gy/mm " | and the clinical

impact of the spatial errors may need further investiga-
tions ",

With a correct registration map, dose delivered at
each fraction could be mapped to a reference image
and summated to get the total dose. However, dose in-
terpolation methods may induce dose mapping errors in
regions with high dose gradients, and some large errors
even not at a steep dose gradient ', The latter could
be due to different formations of image grids between
the source and target images. Deformable dose accu-
mulation (DDA) could also be compromised by chan-
ges in the mass and volume of solid tumors and/or nor-
mal tissue over the course of treatment. To address
these issues, 4D Monte Carlo-based methods such as
voxel-warping method (VWM) * | energy-mass con-

[53

gruent mapping ( EMCM) ™ and energy-conserved

39, 54]

registration methods were proposed to help im-

prove the quality of dose accumulation. Recently EM-

CM was applied to model-based dose calculation algo-

[3940]

rithms in a commercial software package , and its

computation speed was improved significantly by using
a GPU-based computational approach .
Quality assurance

Adaptive treatment planning involves 3D dose cal-
culation, DIR, contour propagation, dose warping and
accumulation. ldeally each of these tasks could be e-
valuated separately for each patient. Different from
conventional dose calculation algorithms which can be
verified with homogeneous and heterogeneous dosimet-
ric phantoms, the total dose delivered to deforming or-
gans over the course of treatment is difficult to verify.
This is mainly due to the lack of a gold standard re-
quired to evaluate the DIR and DDA operations . It
is necessary to have independent verifications of dose
accumulation for each patient. In general, two kinds of
verifications can be performed.

Spatial accuracy : landmark and contour consisten-
cies and DICE similarity coefficients are often used as
criteria to evaluate the performance of DIR in different

[46, 57-59]

applications , and the self and inverse consis-

tencies of deformation maps have also been used to e-

(29, 60-61]

; com-

valuate the accuracy of the registration
putational phantoms offer another option to verify the
accuracy of displacements at all voxels in the registered
images. The phantom’ s deformation can be simulated
using different mathematical formulae '®’. With the
aid of the finite element method, Stanley et al created
a patient-specific deformable model to improve the re-
alism of tissue deformation for a lung cancer patient

') The FEM-computed deformable model and a de-

formable dosimetry were overlaid as shown in Figure 2

(a).

Anterior

Figure 2. The FEM-computed Deformable Model and a Deformable Dosimetry

(a) A lung patient CT image overlaid on its warped image using a patient-specific FEM model; (b) a deformable dosimetry phantom;

(c¢) the CT image of the dosimetry phantom.
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Dosimetry accuracy: different from computational
phantoms, physical phantoms may help measure the
delivered dose to verify dose accumulation operations.
Figure 2 (b) showed a deformable phantom containing
heterogeneous sponges for simulating respiratory mo-
tion. The phantom with deformation automatically driv-
en by a motor was irradiated, and delivered doses were
measured by imbedded thermoluminescent dosimeters
(TLDs). However, these phantoms are unable to sim-
ulate mass changes in tumors and other organs while
these changes are often observed during the course of
treatment. Also these phantoms do not show realistic
organ deformation and mass heterogeneity as patients,
so further improvement of these phantoms is highly de-

sired [0+

. It was suggested that the phantom-based e-
valuations should be supplemented by other verification
methods such as the energy conservation criterion that
can be applied to both deformed anatomical structures

39, 54
and regressed tumor volumes ' .

CLINICAL IMPLEMENTATION

When patients have large spatial changes in tumor
targets or organs at risk, it is important to have the ini-
tial treatment plan adapted. Different adaptive planning
strategies, however, could result in different clinical
outcomes.

Applications of adaptive radiotherapy

As the PTV is generally large for locally advanced
non-small-cell lung carcinoma ( NSCLC), the initial
treatment plan often show high radiation dose to healthy
tissue. For example, the treatment regimen of 30 x 2
Gy to tumor targets may cause mean lung dose ( MLD)
to exceed 20 Gy for patients with bulky tumors. On the
other hand, it was observed that lung tumors regress of
about 50% volume over the course of fractionated RT
1610767991 For these patients, radiation beams could
be reshaped to the residual tumor target after delivering
a number of treatment fractions, and this may reduce
radiation toxicity to surrounding tissue.

Radiation therapy with the radiation target field up-
dated during the course of treatment has recognized po-
tential to benefit patients (the NRG/RTOG Trial No.
1106) ™7,

dose may help improve tumor locoregional control and o-

It was reported that escalating radiation

7374]

verall survival ' . With tumor regression, high-quali-

ty ART may ensure iso-toxic dose escalation which may
consequently help improve clinical outcomes 7",

In addition, radiation treatment may change ana-
tomical structures and physiological functions. For ex-
ample, airway obstruction could be alleviated after a few
weeks of treatment. This will allow the collapsed lung
structures re-ventilated. Respiratory patterns could con-
sequently change and the relative positions of lung and
other structures could be different after the treatment.
The atelectatic changes combined with anatomical varia-
tions may render it necessary to update the pretreatment
plan for the remaining treatment fractions '*’.
Frequency of plan adaptation

As tumor continuously shrinks during the course of
treatment, there is a trade-off between the amount of
the reduced tumor volume and the number of the remai-

! It has been reported that plan adap-

ning fractions
tation performed around fraction 15 and fraction 20 is
most dosimetrically efficient for concurrent and sequen-
tial chemo-radiotherapy, respectively. Based on iso-
toxic mean lung dose (MLD), re-planning twice at
weeks 2 and 4 may achieve an average escalation of
13.4 Gy | and at weeks 3 and 5 may have an aver-
age increase of 7 Gy on tumor targets. Since tumor
shrinkage depends on many factors such as tumor his-
tology, location, stage and imaging modality used in
the volume measurement, the optimal time point for
plan adaptation and its dosimetric gain could have vari-
ations for individual patients.

The benefits of adaptive planning in terms of nor-
mal tissue sparing have also been investigated by multi-
ple investigators. Guckenberger et al showed that when
the GTV volume reduced 39% on average, a single
plan adaptation at the end of week 4 was able to reduce
MLD by 100 ¢Gy on average ''>*”’'. Dial et al demon-
strated that the mid-treatment plan adaptation reduced
MLD by 38 c¢Gy for patients having an average GTV re-
duction of 21% at the end of the treatment "' ; Wood-
ford et al found that the MLD reductions are in the
range of 30 to 160 ¢Gy for three patients . These re-
sults suggested that the majority of the gains from ART
can be achieved by implementing a single mid-treat-

ment adaptation if the tumor volume regresses by 30%
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within the first 20 fractions \™*.

It should be mentioned that large uncertainties
may exist in the measurement of residual tumor vol-
umes. For example, internal hemorrhage, necrosis, or
metabolically non-viable tumor cells could be mis-coun-
ted in the measured volume, especially when only
CBCT images were used for the volume measurement
7! Compared to CT or CBCT images, FDG-PET ima-
ges can show metabolic activities in addition to the
tumor volume. It was therefore recommended that both
CT and PET images shall be used for the mid-treatment
tumor response measurement for adaptive RT 70790
Note that the standardized uptake value (SUV) of PET

[80-82] . and

images could be influenced by many factors
changes in region-specific SUVs cannot be quantified
until the correspondent images are correctly registered
18841 While the Response Evaluation Criteria in Solid
Tumors ( RECIST) has been used as a criterion for e-

1 methods for

valuation of tumor response in clinic
quantitative assessments of tumor response, in addition
to tumor volume measurements, are worth further inves-
tigations.
Dose regimens for adaptive planning

It has been reported that for locally advanced
NSCLC, dose regimens in the range of 60 ~66 Gy have
5-year overall survival rates at 10% ~ 15% %/, Al-
though a randomized trial did not show superiority at a
dose of 74 Gy " the reasons for the underperfor-
mance of the higher dose arm are still unclear ¥
Technical factors such as respiratory motion manage-
ment, treatment planning margin, delivery mode (IM-
RT vs 3D-CRT) and imaging modality used for treat-
ment planning and delivery all could have impacts on
the clinical outcomes, and each of these components

S701 Tt was repor-

may be worth further investigations
ted that for patients with locally advanced NSCLC, a-
daptive planning increases radiation dose up to 80 Gy
on average on the residual tumor without increasing

MLD [67!]

and delivery techniques will help better spare lung,
[86]

In general, improved treatment planning

heart and other healthy organs from irradiation
For lung cancer patients, it has been reported that

increasing dose from 60 Gy to 74 Gy results in predicta-

[91

ble, deleterious effects on quality of life *''. For these

patients, RT-induced adverse events may include pneu-

%) and therefore

monitis, esophagitis and pericarditis '
radiation dose to these organs should be minimized.
Compared to dose escalation, it is of equivalent impor-
tance to develop effective treatment strategies to miti-
gate normal tissue toxic effects for these patients. It was
shown that for iso-prescription adaptive plans (relative
to initial plans), mean lung dose was reduced, on av-
erage from 17.3 Gy (initial plan) to 14.8 Gy for the a-

1871 Tt is worth conducting clinical tri-

dapted plans
als to compare clinical gains of different ART strate-
gies, e. g. ; iso-toxic dose escalation wvs iso-prescrip-
tion, for plan adaptation. It has been reported, re-
cently, from a phase 2 clinical trial that PET-CT
guided ART for locally advanced NSCLC improved lo-

cal-regional control '**'.

With more clinical data being
collected on locoregional control and overall survival, it
will be possible to develop optimized dose regimens and

treatment protocols for ART.

DISCUSSION

Since patients with locally advanced NSCLC often
have tumor regression during the course of fractionated
radiotherapy, updating their initial RT plan may help
enable dose escalation to residual tumor targets and
spare normal tissue. Pre-clinical studies have shown a
great promise for adaptive radiotherapy to treat these
patients. Different strategies such as iso-toxic target
dose escalation or iso-prescription normal tissue sparing
have been proposed for plan adaptation. The emergency
of onboard imaging, especially MRI-Linac, has ren-
dered ART an imperative treatment modality for many
patients. While significant progress has been made in
the past twenty years for automatic contouring, image
registration, dose accumulation and re-planning algo-
rithms, ART techniques remain to be improved before
they can be routinely used for treatment of NSCLC pa-
tients '/,

Since DIR plays multiple roles in ART, registra-
tion accuracy is still the major concern for the clinical
implementation of ART. It has been illustrated that in-
tensity-based DIR algorithms are prone to have errors in
regions with low image contrasts """’ and tumor re-

gression may also cause registration errors in nearby
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normal tissue. For every 10% regression in tumor vol-
ume, the dose error associated with a rigid ( non-de-
formable) registration algorithm for computing accumu-

68]

lated dose is approximately 1 Gy ' The large dose
errors (up to 5 ~6 Gy for 50% tumor regression) will
downgrade the quality of adaptive therapy and are likely

1 Due to the lack of

to impact treatment outcomes
knowledge on the pattern of tumor regression, how to
deform the anatomical structures nearby the tumor is

[98.72] © While mechanical models have

still unclear
been introduced to improve registration accuracy, their
parameters and constraints still need to be optimized.
Since registration errors could be propagated to dose re-
construction and response assessment, the accuracy of
these algorithms in clinical settings needs to be further
evaluated. Also with DIR used in more clinical applica-
tions, computational speeds for FEM or B-Spline-based
registrations need to be improved.

Different from development of an initial treatment
plan, CTV margins required for an adaptive plan could
depend on the precision and efficiency of delivered
treatment. Since tumor response is not uniform, sur-
vived tumor cells may exist sporadically. Similar to
sub-clinical disease spread from initial gross tumor vol-
umes, tumor cells may survive in the regions surround-
ing the residual tumor, and these regions still need to
be covered by an updated CTV for the adaptive plan
%) While PET images, after appropriate registra-
tions,, may help identify regions with high metabolic ac-
tivities, the resolution of these images is limited, and
the survived tumor cells cannot be detected effectively.
Since treatment efficacy is patient dependent, it is not
straightforward to find the optimal dose required to e-
liminate the remaining tumor cells.

Adaptive planning strategies, with different dose
levels assigned to the remaining tumor and to the re-

respectively, have

90]

gions with subclinical diseases,

been considered in clinical trials Different from
the sub-volume boosting to each segment in these tri-
als, dose painting has also been proposed by using a
voxel-level dose prescription based on image intensity

changes in individual pixels 7',

The quantitative use
of images, termed as theragnostic imaging, may help

determine the minimal radiation dose required to treat

individual patients. When image quantities are directly
associated with radiation dose, the quality of these ima-
ges and their derivatives should be reviewed with high
standard criteria.

Pre-clinical studies have shown that ART may help

optimize treatment regimens, improve clinical out-

comes, and consequently benefit many cancer patients.
It is worth improving adaptive planning techniques and
meanwhile investigating the efficacy of different ART

strategies with more clinical trials.
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